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Abstract

Existence conditions for naked singularities in spherical symmetry will be proved for arbitrary
Misner–Sharp masses which fulfil the weak energy condition.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The final state of gravitational collapse is an important open issue of classical gravity.
It is, in fact, commonly believed that a collapsing star that is unable to radiate away—via,
e.g. supernova explosion—a sufficient amount of mass to fall below the neutron star limit,
will certainly and inevitably form a black hole such that the singularity corresponding
to diverging values of energy and stresses will be safely hidden—at least to far away
observers—by an event horizon. However, this is nothing more than a conjecture—what
Roger Penrose first called a “Cosmic censorship” conjecture[3]—and has never been
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proved. On the contrary, in the last 20 years of research, many analytic examples of spher-
ically symmetric naked singularities satisfying the principles of physical reasonableness
have been discovered (cf., e.g.[2] and references therein).

So the first results for a collapse of spherical dust clouds were given by Eardley and
Smarr[8] using numerical techniques, and hitherto in an analytic way by Christodoulou[9]
preparing the tools to characterize completely the spectrum of the endstates. However, dust
models do lack their physical reliability, since it is supposed that anisotropic stresses occur
during the collapse, and for the few results regarding perfect fluids on this field. So it was
in [5,6] that only tangential stresses were considered.

A complete, new model of gravitational collapse which includes both radial and tangen-
tial stresses is done in[1]. The authors derive a class of anisotropic solutions which is in
itself new, and contains the dust and the tangential stress metrics as special cases. The study
of gravitational collapse is done under a non-degenerate condition of the energy profile of
the initial data. In this paper we develop the study, started in[1], considering the general
case under the degenerate condition.

We proof conditions for all masses satisfying standard requirements as the weak energy
condition and regularity in the center in terms of the first non-vanishing Taylor term proving
the existence or non-existence of local super-solution forEq. (14). Throughout all sections
we assume that the non-degenerate condition does not hold, that is we assumeα = 0 (cf.
(13)). However, for the discussion of the endstates in the proof ofTheorem 9(the main
result of the present paper) the general case (including the non-degenerate case) can be
deduced from it.

2. Einstein-field equations in spherical symmetry

In the following section we sketch out some notations and facts from Giambo et al.[1].
Any spherically symmetric hyperbolic metric in comoving coordinates takes the form

ds2 = −e2ν dt2 +
(

1

η

)
dr2 + R2(dθ2 + sinθ2 dϕ2) (1)

with functionsν, η andRdepending onr, t, the comoving radius and time, respectively. In
this frame the physical properties of elastic materials can be described in terms of a state
function that in the comoving gauge of spherical symmetry reads as functionw(r, R, η)
depending only on the radius and two strain parameters[4,5]. In this gauge the equations
of state become

pr = 2ρη
∂w

∂η
, pϕ = −1

2
ρR

∂w

∂R
. (2)

As was shown in[1] another gauge proofs very useful dealing with gravitational collapses.
In the area-radius gauge—first introduced by Ori[7]—the comoving timet is substituted
byRsuch that the line element (1) becomes

ds2 = −Adr2 − 2B dRdr − C dR2 + R2(dθ2 + sinθ2 dϕ2) (3)
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with functionsA, B andC depending onr andR. The choice of the gauge and the funda-
mental field variables is strongly related to the field equations in the way the latter ones
can be simplified. In fact, introducing the velocity of the transformed fieldvµ = e−νṘδ

µ
t

as its modulou = |e−νṘ| and the area-radius slice∆ = B2 − AC = 1/ηu2, and choosing
a convenient set of the field equations, they can be expressed in terms ofA, u and

√
∆. A

useful quantity is the Misner–Sharp mass defined byΨ = (R/2)(1− A/∆) that character-
ize implicitly the apparent horizon during the collapse. Moreover, it is byΨ that the field
variables decouple, and by a separation ansatz for the state functionw, the system can be
integrated to the admissible class of metrics

ds2 = −
(

1 − 2Ψ

R

)
∆dr2 +

√
∆
Y

u
(dRdr + dr dR) − 1

u2
dR2 + R2 dΩ2, (4)

where

√
∆(r, R) =

∫ R

r

∂(1/u)

∂r
Y (r, σ)−1 dσ + 1

Y (r, r)u(r, r)
, (5)

and

Y2 = 1 + u2 − 2Ψ

R
. (6)

Both, Y as well asΨ are independent arbitrary functions. In order to render the model
physically reasonable the weak energy condition must be satisfied. To this end it is useful
to express the state function in terms of the Misner–Sharp mass and of the distribution of
the initial massE

w = E

(
Ψ,r

Y
+ Ψ,R√

η

)
. (7)

From the pressure and the energy densityε = ρw (given by the state function and the
internal mass densityρ) the weak energy condition in spherical symmetry is equivalent to
ε ≥ 0, ε + pr ≥ 0, ε + pϕ, leading to

Ψ,r ≥ 0, Ψ,R ≥ 0, Ψ,r ≥ R

2
Y

(
Ψ,r

Y

)
,R

, Ψ,R ≥ R

2
Ψ,RR. (8)

Further, the center is supposed to be regular for all times up to the formed singularity and
the stress tensor has to be isotropic atr = 0. By this and together with the condition that
the initial energy decreases with increasing radius one states easily the following set of
conditions that defines together with the state of matter equation thearea-radius separable
space–time(ARS)

Y (0,0) = 1, Ψ (0,0) = 0, DΨ (0,0) = 0, D2Ψ (0,0) = 0, (9)

Ψ,rr(r, r) + 2Ψ,rR(r, r) + Ψ,RR(r, r) − 2

r
(Ψ,r(r, r) + Ψ,R(r, r)) ≤ 0. (10)
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2.1. Conditions for singularity forming

We recall that a singularity forms if the energy density diverges which is given ifR or
u
√
∆ vanish. The latter case leads toR′(r, t) = 0, and singularities of this kind are called

shell-crossingsingularities. In this paper we concentrate us on the former caseR = 0, that is
on the so-calledshell-focusingsingularities. Thus, it is sufficient to require strict positivity
of the

√
∆(r,0) together with a non-increasing behavior of

√
∆(r, R) w.r.t.R. Furthermore,

the implicit time curvets(r) for the zeros ofRmust be finite inr = 0 if any singularity
should occur. This, by integrating along the flow lines, leads to the condition

0 < lim
r→0+

∫ r

0
e−ν(r,σ)H(r, σ) dσ, H := 1

u
. (11)

Since time reparametrizations are always possible such that holdsν(0, t) = 0. Moreover,
by the equation

Yν′ = R′Y,R

(stemming from the field equatioṅR = Ṙν′ + R′λ̇), we deduce thatν is uniformly bounded
and limr→0+ ν(r, σ) = 0 uniformly forσ ∈ [0, r]. Therefore we obtain the equivalent con-
dition

lim
r→0

∫ r

0
H(r, σ) dσ < ∞. (12)

As shown in[1], for an ARS space–time this is fulfilled if the non-degenerate condition

DY (0,0) = 0, α := ∂3

∂r3
Ψ (0,0) > 0 (13)

is satisfied. As will be shown below, the caseα > 0 can be dropped and condition (12)
is true even in the degenerate caseα = 0. We prove equivalent conditions for this case in
Lemma 3.

For the sake of a consistent terminology we refer to[1] and call a ARS space–time
collapsingunder the conditions that shell-crossing does not occur and if holds (12).

Finally we consider the radial null-geodesic equation

∂R

∂r
= u

√
∆(Y − u). (14)

We recall the definition of nakedness from Giambo et al.[1] and say that

Definition 1. The center is called (locally) naked if there exists a future pointing local
solutionRg of (14) withRg(0) = 0 andRh(r) < Rg(r) for r > 0, whereRh is the implicit
function forR = 2Ψ .

In order to answer the question whether a formed singularity will be hidden or visible to
nearby observers it is now sufficient to state existence (or non-existence) of sub- and super-
solutions for (14) for sufficiently small radiir. We recall that for a sub-solutionR+ (or super-
solutionR−, resp.) for (14) with initial valueR±(0) = 0 holds∂R+/∂r ≤ u

√
∆(Y − u)
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(and≥ resp.). In fact, the ill-posedness of the Cauchy problem in the center, where the
singularity forms, does not assure existence results for geodesics. Nevertheless, local radial
null-geodesics (if there are any) away from the center must be bounded and “traced back”
to the formed singularity in the center by some sub- and super-solutions (seeLemma 8and
the mainTheorem 9, and Lemma 2 in[1] for details).

Hence, due to the local existence argument it is sufficient to extend the right-hand side
in (14) in Taylor and to establish conditions on the first order terms. As done in[1] the
spectrum of the endstates is fully characterized under the non-degenerate conditionα > 0

Theorem 2 ([1]). In a collapsing space–time the singularity forming in the center is
locally naked ifn < 3 or if n = 3 and ξ > αξc, where

√
∆(r,0) = ξrn−1 + O(rk), k ≥ n,

andξc = (26+ 15
√

3)/2. If n > 3, then the singularity is covered.

Nevertheless, dropping the non-degenerate condition we prove conditions to obtain a
similar result as inTheorem 9, the main result of the present paper. As will come out
from the discussion in the proof there one easily deduces also the non-degenerate case (see
Remark 10after the proof ofTheorem 9).

3. Expansion of
√

∆

In this section the Taylor expansion for
√
∆ will be derived for ARS space–times under

the condition that in (13) holdsα = 0. As in (5) we have

√
∆(r,0) =

∫ r

0

H,r(r, σ)

Y (r, σ)
dτ + H(r, r)

Y (r, r)
,

where by the definition in (11) and (6)

H(r, σ) =
√

σ

2Ψ + σ(Y2 − 1)
,

and forY near 0 holdsY (r, σ) = 1 + O(r2) + O(rσ) + O(σ2). For simplicity we define
H(r, σ) := 2Ψ (r, σ) + σ(Y (r, σ)2 − 1) and derive the Taylor like expansion

H(r, R) =
∑
i+j≥3

Tijr
iRj + R

∑
i+j≥2

Λijr
iRj (15)

where the coefficients correspond to the expansion terms of 2Ψ andY2, respectively. The
relation between the coefficients forYandY2 is clearly given by

Λi,k−i =
k∑
l=0

∑
r+s=i
0≤r≤l

0≤s≤k−l

Λ̃r,l−rΛ̃s,(k−l)−s, (16)

whereΛ̃ denote the coefficients forY.
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Now consider the implicit time function, for which the shell of labelr vanishes in the
center. Usingν(r, σ) = O(r) for everyσ near 0 we have

ts(r) =
∫ r

0
e−ν(r,σ)H(r, σ) dσ �

∫ r

0
H(r, σ) dσ. (17)

In order that the singularity in the center forms in finite time it must hold

t∗ := lim
r→0

ts(r) ∈ (0,∞).

For notational convenience we setβ := T21 + Λ20, γ := T12 + Λ11 andδ := T03 + Λ02
and define

l := min{i ∈ N|Ti0 �= 0} ≥ 4. (18)

We prove the following lemma.

Lemma 3. Supposeα = 0.Thent∗ ∈ (0,∞) if and only if holds: β > 0,or if β = 0, then
γ > 0.

Proof. Applying the transformationσ = rτ, τ ∈ (0,1) we first get

H(r, rτ) =
∑
k≥3

rk
∑
i+j=k

Tijτ
j +

∑
k≥2

rk+1
∑
i+j=k

Λijτ
j+1 = rlTl0 + Θ(τ)r3 + O(rs+3),

(19)

wheres ≥ 1 and

Θ(τ) := βτ + γτ2 + δτ3

and the integrand on the right-hand side of (17) reads as

H(r, σ) dσ =
√

τ

Θ(τ) + Q(r)
dτ (20)

with error

Q(r) := P(τ)rs + Tl0r
l−3 :=

∑
k≥s

i+j=k

hijτ
jrs + Tl0r

l−3,

Q(r) = O(rp), p := min{l − 3, s}, (21)

where

hij =
{
Tij + Λi,j−1, j ≥ 1,

Ti0, j = 0.

Clearly for any sequencern → 0 the integral exists if and only if the polynomialΘ has
non-negative first order coefficientβ. In particular it has positive limit if and only if holds
strict positivity, or if it is zero, then must holdγ > 0. �
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Next we prove conditions for
√
∆, in order to hold some expansion in 0.

Lemma 4. Supposeα = 0,β > 0.Let s ≥ 1, l, p andQ,P be as defined in(18), (19)and
(21), respectively, and letQ ≥ 0. Then there exists an integerq ≥ 2 andξ ∈ R such that
under the conditions

(i) l > p/2 + 4, q > p/2, s > 1, s − 1 > p/2,

(ii)



P(0) ≥ 0 if l − 3 < s,

(P(0) − Tl0 �= 0, P(0) > 0) orP(0) = 0 if s = l − 3,

P(0) > 0 if s < l − 3,

the following estimate holds:

ξrn−1 + O(rk) ≤
√
∆(r,0) ≤ O(rν), k > n − 1, ν > 0 (22)

Proof. Split
√
∆(r,0) up into

√
∆(r,0) =

∫ r

0
g(r, σ)H,r(r, σ) dσ + 1

Y (r, r)

d

dr

∫ r

0
H(r, σ) dσ, (23)

g(r, σ) := 1

Y (r, σ)
− 1

Y (r, r)
. (24)

By the transformationσ = rτ and by the definition ofH we get

∂H

∂r
(r, τr)r dτ = − r

√
rτ

2

(∂H/∂r)(r, rτ)

H3/2(r, rτ)
dτ.

It holds

∂H

∂r
(r, rτ) = lrl−1Tl0 + (2βτ + γτ2)r2 + M(r),

where

M(r) :=
∑

k=i+j≥s+2
i≥1

i hij τ
jrk = O(rs+2).

For l ≥ 4 we have

∂H

∂r
r = − r

√
rτ

2

lTl0r
l−1 + (2βτ + γτ2)r2 + M(r)

(rlTl0 + Θr3 + O(rs+3))3/2

= −
√
τ

2(Q(r) + Θ(τ))3/2
(lTl0r

l−4 + r−1(2βτ + γτ2) + r−3M(r)). (25)
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Now

g(r, rτ) � Y (r, r) − Y (r, τr) =
∑
k≥2

Sk(τ)rk,

whereSk(τ) = ∑
i+j=k,j>0 Λ̃ij(1 − τj). Let be

q := min{k ≥ 2|Sk �≡ 0}.

(Observe thatq does not depend on coefficients of the typeΛ̃i0.) We get∫ 1

0
g(r, rτ)H,r(r, rτ)r dτ

=
∫ 1

0
Sq(τ)H,r(r, rτ)rq+1 dτ + O(rq+1)

∫ 1

0
Sq+1(τ)H,r(r, rτ)r dτ. (26)

Thus by using (25)∫ 1

0
Sq(τ)H,r(r, rτ)rq+1 dτ � − rq+l−4

∫ 1

0

l Tl0 Sq(τ)
√
τ dτ

2(Θ(τ) + Q(r))3/2
=: F (r)

+ rq−1
∫ 1

0

(2βτ + γτ2) Sq(τ)
√
τdτ

2(Θ(τ) + Q(r))3/2
=: G(r)

+ rq
∫ 1

0

r−3M(r, τ)Sq(τ)
√
τ dτ

2(Θ(τ) + Q(r))3/2
=: H(r)

(27)

The integrals exist, sinceQ > 0 for sufficiently smallr > 0. The second term in (26) has
only higher order terms with respect to the lowest order term in (27).

The second integralG(r) gives a contribute of order O(rq−1), i.e.

G(r) � rq−1a, a :=
∫ 1

0

(2βτ + γτ2)Sq(τ)
√
τ dτ

2Θ(τ)3/2
. (28)

For the first integralF (r) we obtain, omitting constants

rq+l−4
∫ 1

0

√
τ dτ

(Θ(τ) + Q(r))3/2
≤
∫ 1

0

√
τ

Θ(τ)

rq+l−4√
P(τ)rs + Tl0rl−3

dτ = O(rq+l−4−p/2)

(29)

and hence by conditions (i) and (ii) convergence to 0. By the same arguments it follows that
H(r) ≤ O(rq−p/2) and again by (i) convergence to 0. On the other hand, there existsC ∈ R

F (r) ≥ rq+l−4
∫ 1

0

√
τ dτ

(C + Q(r))3/2
� O(rq+l−4) (30)

and analogousH(r) ≥ O(rq−1).
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The second part of the split in (23) reads as

1

Y (r, r)

d

dr

∫ 1

0
H(r, rτ)r dτ � d

dr

∫ 1

0
H(r, rτ)r dτ = d

dr

∫ 1

0

√
τ

Θ(τ) + Q(r)
dτ

= −1

2

∫ 1

0

(d/dr)Q(r)
√
τ dτ

(Θ(τ) + Q(r))3/2
.

The last integral reads as

−1

2

∫ 1

0

Tl0r
l−4√τ dτ

(Θ(τ) + Q(r))3/2
− 1

2

∫ 1

0

P(τ)srs−1√τ dτ

(Θ(τ) + Q(r))3/2
=: I(r) + J(r),

where we denote first term byI(r) and the second term byJ(r), respectively. Clearly they
exist for allr > 0 and we obtain forI with analogous estimates as in (29) and (30)

O(rl−4) ≤ I(r) ≤ O(rl−4−p/2)

with convergence to 0 by (i).
ForJwe obtain, ifP(0) = 0

J(r) � srs−1b, b := −1

2

∫ 1

0

P(τ)
√
τ dτ

Θ3/2
.

and, ifP(0) > 0

J(r) � srs−1−p/2b, b := lim
r→0

−1

2

∫ 1

0

√
τ

Θ

P(τ) dτ√
Qr−p

and by (i) in both cases convergence to 0.
Finally, we get forr > 0 small enough by (29) and the above discussion

O(rσ) ≤ F (r) + H(r) + I(r) = O(rν)

for some 0< ν ≤ min{l − 4 − p/2, q − p/2} and 0< σ ≤ min{q − 1, l − 4}, and there-
fore by (28) and by the estimates onJ in the caseP(0) = 0 (caseP(0) > 0 is treated
similarly)√

∆(r,0) � F + G + H + I + J ≥ ξrn−1 + O(rn−1+ε),{
≤ arq−1 + srs−1b + O(rν),

≥ arq−1 + srs−1b + O(rσ)

for someε ≥ 0, ξ �= 0 andn := min{q, s, σ + 1}. Whence, estimates (22) hold.�
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Remark 5. It is easy to check that from the conditions (i) and (ii) inLemma 4follows that:

l > 5 and s > 2, (31)

and otherwise no estimates for
√
∆ of the type (22) can be expected. Therefore we call,

l ∈ N admissible if it satisfies the conditions inLemma 4. Furthermore, from condition
Q ≥ 0 follows P, Tl0 ≥ 0. Hence, we consider in the following only those massesΨ for
whichTl0 ≥ 0.

Remark 6. Fromq > p/2 one gets

Λ̃ij = 0 ∀i + j ≤ 1
2p, j > 0.

By (16) this means

Λi,k−i =
{∑k

l=0 Λ̃l0Λ̃k−l,0, i = k,

0, i < k

for k ≤ p/2.

4. The horizon and naked singularities

In this section it will be shown that the implicit function for the horizonRh is a super-
solution of the null-geodesic equation near the singularity and that there are sub-solutions
of the formcrl with l defined in (18).

Lemma 7. The implicit horizon functionRh has the same order in r asΨ (r,0). More
precisely holds

Rh(r) = Tl0r
l + O(rl+1), ω ∈ R+. (32)

thusRh is a super-solution for the null-geodesic equation.

Proof. We have by simple Taylor expansion and using the definition ofRh

Rh(r) = 2Ψ (r,0) + 2
∂Ψ (r,0)

∂R
Rh(r) + O(|Rh(r)|2), (33)

where

Ψ (r,0) = O(rl),
∂Ψ (r,0)

∂R
= O(rd), d ≥ 2.

By the weak energy condition the horizonRh vanishes only in 0. Divide (33) byRh(r). This
proofs (32). From (6) follows thatY = u, hence the horizon is a super-solution.�

In the following we set for conveniencẽα := Tl0 ≥ 0 (recallRemark 5).
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Lemma 8. The central singularity of an ARS space–time is naked if and only if there exists
a sub-solution for(14)of the formcrl such thatc > α̃.

Proof. The proof can be readily seen in[1] as a slightly modified version of Lemma 2.�

Theorem 9. Let α̃ as above and

ξrn−1 + O(rk) ≤
√
∆(r,0) ≤ O(rν), k > n − 1, ν > 0, ξ ∈ R. (34)

and l := min{i ≥ 0 : Ti0 �= 0} an admissible number(seeRemark 5). In a collapsing ARS
space–time, the singularity forming at the center is locally naked if, 1 ≤ n − 1 ≤ l. If,
l = n, then there exists some positive numberµ = µ(l) ∈ R such that ifξ > 0 and if holds
ξ/α̃ > 1/µ, then the singularity is naked.

Proof. We proof thatcrl for c > α̃ is a sub-solution for the null-geodesic equation near the
center. Together with the fact thatRh is a super-solution this will proof the theorem. Let be
C(r) := crl with c > α̃.
Step 1. Expansion ofY − u. EvaluatingH at (r, C(r)) we get

H(r, C(r)) =
∑
i+j≥3

CjTij r
i+lj +

∑
i+j≥2

Cj+1Λij r
i+l(1+j).

For the numbersi + lj andi + l(1 + j), respectively, we have forα = 0

i + lj ≥ l and “ = ” ⇔ i = l j = 0,

i + l(1 + j) ≥ l + 2 and “= ” ⇔ i = l, j = 0.

this can be seen byn(j, k) := (l − 1)j + k

l = n(0, l) < n(l + 1,0) < · · ·

andm(k, j) := k + l + (l − 1)j

l + 2 = m(2,0) < m(3,0) < · · · < m(l,0) < m(2,1) < · · · .

Thus

H(r, C(r)) = α̃rl + O(rl+1).

It follows:

u(r, C) = H(r, C)−1 =
(
H(r, C)

crl

)1/2

=
√
α̃

c
+ O(r1/2)
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and further

Y (r, C) − u(r, C) = 1 −
√
α̃

c
+ O(r1/2). (35)

Step 2. Evaluation of
√
∆. Similarly as above

H(r, τrl) =
∑
i+j≥3

τjTij r
i+lj +

∑
i+j≥2

τj+1Λij r
i+l(1+j) = α̃rl + O(rl+1).

Calculate (∂H/∂r)(r, τrl)

∂H

∂r
(r, τrl) =

∑
i+j≥3
i≥1

Tijiτ
jri−1+jl +

∑
i+j≥2
i≥1

iΛijτ
j+1ri−1+l(1+j).

For the numbersn(k, j) := k − 1 + l + (l − 1)j andm(k, j) := k − 1 + (l − 1)j, we have

l − 1 = m(l,0) < m(3,1) < m(4,1) < · · ·

and

l + 1 = n(2,0) < n(3,0) < · · · .

Thus we have

∂H

∂r
(r, τrl) = lα̃rl−1 + O(rl).

We calculate similar toLemma 4with σ = τrl

∂H

∂r
(r, σ) dσ = −

√
σ

2

(∂H/∂r)(r, σ)

H3/2(r, σ)
dσ = −

√
τrl

2

lα̃rl−1 + O(rl)

[α̃ rl + O(rl+1)]3/2
rl dτ.

This gives∫ crl

0

1

Y (r, σ)

∂H

∂r
(r, σ) dσ � −

∫ c

0

√
τrl

2

lα̃rl−1 + O(rl)

[α̃rl + O(rl+1)]3/2
rl dτ

= −
∫ c

0

rl−1√τ

2

lα̃ + O(r)

[α̃ + O(r)]3/2
dτ (α̃ > 0) = − lrl−1

2
√
α̃

∫ c

0

√
τ dτ � − lrl−1

3

c3/2

√
α̃
.

Finally with (34)

√
∆(r, R̃(r)) =

√
∆(r,0) +

∫ cr3

0

1

Y (r, σ)

∂H

∂r
(r, σ) dσ
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≥ ξrn−1 − lrl−1

3

√
c

α̃
c, l ≥ 4. (36)

Step 3. Conditions forC(r) to be a sub-solution.
According to the definition of a sub-solution for the geodesic equation (14) and using

(35) and (36), it is sufficient forC(r) = crl to satisfy

lcrl−1 <

(
1 −

√
α̃

c

)(
ξ

√
α̃

c
rn−1 − lrl−1

3
c

)
(37)

for r > 0 small.
For 1≤ n ≤ l − 1 there existsrn := r(n, l, c, α̃, ξ) > 0 such that for every 0≤ r < rn

the inequality is satisfied ifc > α̃, and the singularity is naked. Now letl = n ≥ 4, that is
the inequality is independent ofr. For convenience define 0�= η = c/ξ ∈ R, ε = sign(η) =
sign(ξ) andσ = σ(α̃, c) = √

α̃/c < 1. By these notations (37) reads as

(1 − σ)

(
σ − lη

3

){
< lη if ξ < 0,

> lη if ξ > 0,

or, equivalently,

pε(σ) = ε

(
−σ2 + σ

(
lη

3
+ 1

)
− lη

4

3

)
> 0, (38)

pε has the zerosσ±(η) = (1/2)(lη/3 + 1) ±
√

(1/4)(lη/3 + 1)2 − lη(4/3) ∈ R, whenever
ql(η) := (1/4)(lη/3 + 1)2 − lη(4/3) ≥ 0. The zeros ofql are positively real

η± = 21± 12
√

3

l
∈ R+ ∀ l ≥ 4

andql < 0 on (η−, η+) ⊂ R. Thusσ± ∈ R if and only if η ∈ R \ (η−, η+). Secondly, ob-
serve thatp+ ≤ 0 everywhere, wheneverσ− = σ+ (p− ≥ 0, respectively), i.e. whenever
ql = 0.
Case 1(ε = −1). It holdsp− ≤ 0 in [σ−, σ+] andql �= 0 for all η ∈ R−, i.e.σ− �= σ+.

Hence, (38) cannot be satisfied there. Therefore, it must hold (0,1) \ [σ−, σ+] �= ∅, or
equivalently:

σ− > 0 or σ+ < 1. (39)

The first condition is clearly equivalent to

1

4

(
lη

3
+ 1

)2

>
1

4

(
lη

3
+ 1

)2

− 4l

3
η ≥ 0,
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which is only satisfied ifη > 0. The second condition in (39) reads as

1

2

(
lη

3
− 1

)
< −

√
1

4

(
lη

3
+ 1

)2

− 4l

3
η ≤ 0

⇔ 1

4

(
lη

3
− 1

)2

>
1

4

(
lη

3
+ 1

)2

− 4l

3
η ⇔ 0 > −lη,

whence, we can ignore this case.
Case 2(ε = +1). With respect to the above discussion letσ− �= σ+, i.e. let η ∈ R \

[η−, η+]. Since it holdsp+ ≤ 0 inR \ (σ−, σ+), (38) can never be satisfied there. Hence,
it must holdM := (0,1) ∩ (σ−, σ+) �= ∅, or equivalently:

σ− < 1 and σ+ > 0. (40)

The first condition reads as

1

2

(
lη

3
− 1

)
<

√
1

4

(
lη

3
+ 1

)2

− 4l

3
η.

If the left-hand side is non-negative we would obtain after squaring−lη > 0, and hence
it must hold necessarilyη < 3/l. From the second condition in (40) we obtain, arguing
similarly as above, thatη > −3/l, and therefore the condition is trivial. We conclude that
(38) is satisfied if and only if holds

0 < η < η− =: µ (41)

(sinceη+ < 3/l never holds).
The proceeding is now as follows. Let beξ, α̃ > 0 arbitrary. Let beη with (41), that is

M �= ∅. Further, the functionσ(α̃, ·) : (α̃,∞) → (0,1) is one-to-one. By this and by (41)
there is somec > α̃, such that there is someσ0 ∈ M such that holds

σ2
0ηξ = σ2

0c = α̃ < σ2
0µξ ⇔ 1

µ
<

1

µσ2
0

<
ξ

α̃
.

From this inequality we can go backwards, i.e. let beξ, α̃ with ξ/α̃ > 1/µ. Then there
is someε > 1 such that stillξ/α̃ > ε/µ. Choose someσ ∈ (max{√1/ε, σ−},1) and set
η = σ−2α̃/ξ. Hence it follows:

0 < η <
σ−2µ

ε
< µ,

that is, forη andσ constructed as above, (38) is satisfied, andc = σ−2α̃ > α̃ gives rise for
some super-solution for the geodesic equation.�

Remark 10. The conditions onξ and α̃ above include the non-degenerate case, re-
naming α̃ = T30 as in Lemma 2 in[1] and settingl = 3. The resulting inequality (37)
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then is exactly as in the proof there. Observe thatµ(3) < ξc, for ξc the constant given in
Theorem 2.
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